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Abstract. In this letter we first show that the movement of a domain wall in a highly 
anisotropic Ising model of spins in two dimensions can be mapped to a random walk 
movement of labelled walkers in one dimension. This movement is correlated in the sense 
that the transition probability of a given walker, labelled i, depends upon the current 
positions of its labelled neighbours ( i  - 1 and i + 1). A Monte Carlo simulation of the walk 
for various numbers of walkers (up to a maximum of 50) and for quite long times (up to 
a maximum of 25 x lo4 Monte Carlo steps) yields useful and interesting information about 
the dynamics. We verify that (i) the centre of mass of the walkers executes an unbiased 
random walk for all times starting from the lowest times; and (ii) the moment of inertia 
of the walkers asymptotically reaches a constant value which scales with the number of 
walkers. 

The results on  the relaxation of a straight vertical wall indicate the existence of a 
characteristic time t *  such that the behaviour of an individual walker for times t < t* is a 
random walk whose variance in position follows a tu -  ( a - - 0 . 5 )  law, whereas the value 
of the exponent for t > I* is approximately such as to indicate an independent unbiased 
random walk. It was found that the time t *  scales with system size with an exponent 4 = 2. 
We also discuss the relation of this work to the dynamics in the ZD Ising model, identifying 
4 with the dynamical exponent z. The random walk equivalence also provides a geometrical 
interpretation of the known results for the solid-on-solid ( S O S )  model. 

Consider Ising spins located on a square lattice as shown in figure 1. In the figure a 
spin configuration in the presence of a wall separating regions of opposite spins is 
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Figure 1. A configuration of the interface. The broken line is an example of an overhanging 
configuration. These configurations are excluded since J, >> k,T. 
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shown. We want to simulate the dynamics of the system starting from a straight vertical 
wall with a spin-flip dynamics satisfying detailed balance. The anisotropy, J, >> kBT >> Jy 
has two major implications: (i)  excitations of spins inside the domains can be neglected 
and only spins at the interface have significant transition rates; (ii) we can ignore 
‘overhanging’ configurations. 

The flip of interface spins of the ith row leads to a movement of the coordinate Xi 
of the interface by one unit to the left or one unit to the right. The coordinate Xi thus 
makes a correlated random walk whose transition probabilities can be obtained from 
the spin-flip transition rate 

W = -  1 exp(-AE/k,T) 
T l+exp(-AE/k,T) 

where AE is the change in system energy when the spin flips and T is the characteristic 
time of a spin flip (table 1). For configurations 2, 4, 7 and 9 we must consider a 
pausing probability proportional to tanh(2PJy). 

We studied the time dependence of the variance of the centre of mass VcM( t )  and 
the moment of inertia of the interface I N (  t ) ,  as well as the variance Vl of the position 
Xi of a generic walker i. These quantities are defined in table 2. All walkers are 
equivalent because we use periodic boundary conditions in the y direction. 

The centre of mass is related to the magnetisation of the system through M =  
2NxCM. The moment of inertia is a measure of the width of the interface and is 
related to the variances VI and VcM in the following way: 

v l ( t ) -  VCM(f ) .  (1) 

The mean magnetisation is of course zero, as can be seen by looking at the transition 
probabilities given in table 1; the sum total of probabilities for all the configurations 
to move to the left is the same as that for movement to the right. 

It is expected that the equilibrium thermodynamic susceptibility for a finite system 
of size N and periodic boundary conditions in the y direction is infinite because of 
the degeneracy of a translation of the interface in the x direction. The susceptibility 
is proportional to the variance of the centre of mass of the domain wall. 

The e uilibrium value of the moment of inertia is finite and can be expressed in 
terms of ct- A -((Xi -X,-.l)2). For a subsystem of size L, 2 <  L K  N, the moment of 
inertia, ZL (table 2), is given by [ l ]  

IL(co) = - L  A’( ---). 1 
6 6L  

where [2] 

1 
2 sinh*(PJ,) 

- 
A * =  . A = Xi - Xi-], 

- It is expected that the above relation is also valid for the entire system, L = N, with 
A2 corrected for the effect of the periodic boundary conditions used in the y direction. 

We have studied systems of size N = 10, 20, 30, 40 and 50 at a temperature 
x = Jy /KBT = 0.1, for up to 25 000 MCS/ N (Monte Carlo steps per walker). The number 
of samples for the averages at each MCS/N was taken as 500. The results were not 
significantly affected if we chose random or sequential updating of the Xi coordinate. 
The latter option was adopted because of CPU time-saving considerations. 
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Table 1. One-step transition probabilities for nine different configurations of neighbours 
of walker i. p l  is the probability of increase of X, by one unit; p t  is the probability of 
decrease of X, by one unit; p i  is the pausing probability. Their sum must be one. P = 1/ k,T. 

k Configuration p l  Pt Pi 

1 +$+- +- 

I 2 

3 +l 4 4 

6 

I 

8 

9 '1 

0 

tanh(ZPJ,) 

0 

f tanh(2/3Jy) 

0 

0 

P: 

P: 

P: 

The variances of the centre of mass for all sample sizes studied are shown on a 
logarithmic scale in figure 2 showing that they are parallel straight lines, whose slope 
is the exponent a in the power-law time dependence, and whose intercept at the origin 
is the logarithm of the diffusion coefficient D,. 

These parameters are shown in table 3 for various sample sizes. The exponent 
obtained is independent of the sample size and is approximately 1. The size dependence 
of D, was found to be of the form In 0, = (0.04*0.1) -(0.99*0.02) In N. 
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Table 2. Definitions of centre of mass, moment of inertia of a subsystem of size L 
(2 < LS N), variance of single walker position and variance of the centre of mass. 

Quantity Definition 

(L L i = l  i (x , - i  L i = l  f x,)’) 

- 4  I I I 1 I I 
0 2 4 6 8 10 

In t 

Figure 2. Plot in logarithmic scale of VCM(r) for all sample sizes studied. The estimated 
error of each point is -0.07; f is in units of MCS/ N in this and subsequent figures. Plots 
are for N = 10 (V), 20 (O), 30 (U), 40 (0) and 50 (+). 

Table 3. Values of diffusion coefficient D, and time exponent a for V,, and the moment 
of inertia IN(w) for various sample sizes. Errors estimated from least-squares linear 
regression in a and in In D, are 0.05 and 0.03 respectively. AI,(w) is the error in I,(w). 

N a In D, I N ( W )  A I N ( ~ )  

10 1.003 -2.36 36.0 1.6 
20 0.993 -2.97 77.1 4.8 
30 0.986 -3.31 118.6 14.4 
40 1.007 -3.67 158.0 19.4 
50 1.011 -3.99 198.6 25.5 
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The quantities V C M ( t )  and V l ( t )  were plotted on a log-log scale and a typical 
behaviour ( N  = 10) is shown in figure 3. The variance of a single walker position, V,, 
shows two distinct behaviours. For times greater than a characteristic time t*,  i.e. 
t > t * ,  the curve In V, is coincident with that of In V,, and for t < t* we have the 
behaviour VI - f a - ,  a- being an exponent slightly larger than 0.5. The values of In t*, 
the exponent a- and the intercept at the origin were registered for various sample 
sizes (table 4). The behaviour of Z N ( f )  for N = 10 is shown in figure 4 and we can 
see the asymptotic approach to a constant value IN(w); values of I N ( m )  for other 
values of N are shown in table 3. 

In order to obtain the temperature dependence of 2 ( T ) ,  we also recorded the 
moment of inertia Z 2 ( f )  of a two-walker subsystem of a s stem of size N =40; it has 
an expect-miting behaviour of the form 12(w) =$A ( T ) .  In table 5 we show the 
values of A'( x), with x = J y /  k,T, obtained from (2) together with those from simulation. 
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Figure 3. In V , ( f )  (0) and In V,-,(f) (0) plotted against In t for N = 10. The estimated 
error of each point is -0.07. 

Table 4. Values of exponent a- and crossover time t* obtained from the graphs In V ,  
against In t for t < t'. For the least-squares fit that gives a- and Inf(=I) we use points 
such that 4411-1 t < 7 .  The estimated error in a- is 0.02 and the error in Inf (z1 )  is 0.1. 
The error in In t* is indicated in the table as A," I f .  

10 0.63 0.5 7.1 0.4 
20 0.58 0.8 9.1 0.3 
30 0.50 1.3 9.4 0.3 
40 0.57 0.9 10.4 0.3 
50 0.56 0.9 10.9 0.3 
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Figure 4. Moment of inertia, IN(f) ,  as a function of time on a log-log scale ( N  = 10). The 
broken curve represents the least-squares fit. 

Table 5. Compasson of theoretical values z h ( x )  given by equation (2) with simulation 
results A:,,,,(x); A2(x) = 4 x  12(co). 

0.1 49.83 47.06 5.73 
0.2 12.34 11.66 0.34 
0.3 5.39 5.07 0.63 
0.4 2.96 2.78 0.02 
0.5 1.84 1.72 0.02 

Let us now discuss these results. First we shall look at the variance of the centre 
of mass. VcM has an approximate behaviour VCM= t / N  ( t  measured in MCS/N) 
which indicates a simple random walk motion for the C M .  This can be justified 
schematically in the following way. In one M C S  the C M  moves the step a = 1 / N .  Thus 
if it were moving as a simple RW, diffusion coefficient D would be 

(step size)’ 1 
(step time) - N’T,,,’ 

-- 

Since VcM = Dt, we obtain 

1 t  
VCM=--*  

N T M C S  

Thus when time is measured in the units of Monte Carlo steps per walker we obtain 
the observed behaviour of VcM = t /  N and D,= 1 / N .  The fact that VcM does not 
attain a limiting value indicates that we have infinite susceptibility. 
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Now let us examine VI and a scaling relation. One can describe the behaviour 
VI( t )  - tu -  for t < t* and Vl( t )  - t /  N for t > t * ,  by a single scaling function 

if it is assumed thatf(x) goes as x'('-~-) for x >> 1 and is essentially constant for x << 1 .  
This gives for t* the behaviour t* - N' and indicates that in the large-N limit 4 and 
a- must obey 

+a-= 4 - 1. (4) 

Relation (4) is needed in order to obtain the (1/N) dependence of the diffusion 
coefficient for large times. 

The scaling relation has been tested, giving the value of 4 in the following way. 
We calculate a- from a least-squares linear fit of the plot of In VI against In t using 
points in the interval 4 <In t < 7. Then we determine the intersection of this straight 
line with the straight line fitted to the plot of In Vc, against In t and then find In t*.  
By plotting In t * ,  thus obtained, against In N we obtain the value I$ = 1.9*0.3. The 
large estimated error is due to large uncertainty in the estimation of t * .  We see that 
relation (4) is approximately satisfied. It is to be remarked that the anomalous diffusive 
behaviour of a single walker, for short times, is expected because of correlation between 
different walkers. However, since the walk is of finite memory we expect [3] a Gaussian 

Now let us discuss the results relating to the moment of inertia and A2. From ( l ) ,  
t* can be interpreted as the equilibration time; after this time an individual walker 
and the centre of mass execute a random walk whose variance is linear in t (the 
variances are two parallel straight lines). This explains why the moment of inertia 
approaches a constant value. These observations lead to the following N dependence 
of the asymptotic value of the moment of inertia (interpreted as wall thickness): 

behaviour in the asymptotic region of the variable Xi. - 

IN(=)) = VI(t*) - VCM(f*) 
= N'"-f( = 1 )  - 
- N'-l 

From the plot of In IN(=)) against In N we once more obtain the value of the 
exponent 4 = 2.08 * 0.07, in good agreement with the value determined before and 
with (2), thereby supporting the self-consistency of our interpretation. 

The temperature dependence of A 2 ( J y / k B T )  as given by relation (2) is confirmed, 
as we show by data in table 5 .  Thus we are confident that our algorithm correctly 
reproduces the equilibrium thermodynamic behaviour. 

Some related models are worthy of consideration here. The model of correlated 
random walkers (in I D )  may be useful for a geometrical understanding of critical 
dynamics in the 2~ Ising model with non-conserved order parameter [4]. According 
to the restricted dynamical scaling hypothesis [SI the characteristic relaxation time of 
the magnetisation scales (in the appropriate critical regime) with the thermal correlation 
length as 

i- - 6'. 
This relation defines the critical dynamical exponent z. It is known [6] that z = 2 in 
the I D  spin model and recently [7] this value was interpreted as due to pure random 
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motion of a domain wall. However, for the 2D spin model, an exact solution is not 
available and the values thus far obtained (see e.g. [SI) were derived either through 
approximate analytical methods or Monte Carlo simulation. A single geometrical 
interpretation is therefore useful in order to gauge the relevance of such results. In 
the following we show how our work does determine z. 

According to universality, the dynamical exponent should be independent of the 
ratio between the nearest-neighbour exchange couplings. We are thus free to consider 
the extremely anisotropic limit, J, >> k,T >> .Iy; therefore, the transition temperature is 
very high and the domain wall extending along the y direction moves essentially along 
the x axis. Furthermore we may choose to consider relaxation at the critical temperature 
(5 = 00) and in this case the above relation can be replaced by 

r -  L' 

where L is some characteristic length of the system. This follows from single finite-size 
scaling and obviously L is the sample size in Monte Carlo simulation. In our case, L 
is the system size along the y direction, or the number N of the walkers. 

We observe that the motion of the walkers is highly correlated due to the weak but 
non-zero J, coupling; the jump rates of a walker are strongly influenced by the position 
of its two neighbours. Actually it is quite easy to see that the motion of a walker is 
purely random if it is situated between its neighbours, otherwise a biased random walk 
occurs which forces it to be between its neighbours. Therefore there is an internal 
force which effectively stretches the wall to its maximum width N. There is then a 
purely diffusive motion of each random walker (a segment of the wall) as well as that 
of their centre of mass. The center of mass executes this diffusive motion with the 
mass equal to N. This is confirmed by the N dependence of the diffusion coefficient 
0,. Furthermore, the CM random walk drags, for sufficiently long times, the individual 
walker. This gives rise to a scaling law (3) and justifies the correct asymptotic result 
found for the moment of inertia. We may thus identify the characteristic time of 
magnetisation fluctuation with that found for the crossover between the two regimes 
observed for each walker. We therefore conclude that z = 4 and our results suggest 
z = 2.08 * 0.07, consistent with very recent Monte Carlo simulations [9]. 

Obviously, it is of interest to extend this type of analogy and such simulations to 
higher-dimensional Ising systems as well as to other models (e.g. the Potts model). 
These will be subjects of future research. 

This work was supported by INIC through the Centro de Fisica FA-1, Universidade 
de Aveiro and JNICT project no 87-154. 
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